Table 1. Number of known solutions of y² = x³ + k for 0 < k < 1008
Table 2. For 0 < k < 1008: smallest x such that x³ + k is a square
Table 3. Number of known solutions of y² = x³ - k for 0 < k < 1008
Table 4. For 0 < k < 1008: smallest x such that x³ - k is a square
Table 6. Solutions of y² = x³ + k for 1008 <= | k | <= 10000
Big Table: one file with everything (plain text, compressed)
This article contains in several tables all solutions to Mordell's equation y² = x³ + k where 0 < | k | <= 10000 and x <= 1010. All this was done by dumb calculation. There is no theory in this article; hence, there is no proof that these are indeed all solutions to Mordell's equation for these k. When one considers the chance that a given x has a cube with a distance of 10000 or less to a square, it is clear that it is highly improbable that any further solutions exist. In fact, the highest x that yielded a solution (x = 110781386 for k = 8569), is more than an order of magnitude smaller than the range searched. But this is, of course, not a proof of the nonexistence of further solutions. Always when terms like "number of solutions" appears in the sequel, they should be read as "number of found solutions, and very likely, but not certainly, number of all solutions".
Here, for given k, one solution is one value of x so that x³ + k is a perfect square. About known solutions, see the introduction.
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 3 1 1 1 1 0 0 4 5 1 0 2 0 0 2 1 8 1 1 0 0 1 0 24 4 1 1 1 2 0 1 1 0 1 0 1 4 3 1 0 1 1 0 1 2 0 0 0 48 1 1 1 0 1 0 1 1 1 3 0 0 0 0 0 2 3 4 0 0 2 0 0 1 72 1 6 0 0 1 0 0 1 4 1 1 0 0 0 0 0 0 4 0 1 1 0 1 0 96 0 1 1 1 6 2 0 0 0 1 1 1 4 0 0 0 1 6 0 0 0 1 0 1 120 1 2 1 0 0 1 1 1 2 3 0 1 1 0 1 0 1 0 1 0 0 3 1 1 144 1 4 0 0 2 0 1 1 1 0 1 0 1 0 0 0 0 4 0 1 3 0 0 0 168 2 3 1 3 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 192 1 0 0 1 3 2 2 1 0 0 0 0 2 0 1 0 2 0 0 0 0 0 0 0 216 1 5 0 0 2 0 0 1 1 13 1 0 0 1 0 0 2 4 0 0 1 0 0 0 240 0 1 0 0 0 0 1 0 2 1 0 1 5 0 0 1 1 1 0 0 4 0 1 0 264 1 1 0 0 1 2 0 1 1 0 0 1 0 0 0 0 1 3 1 1 0 0 0 0 288 1 3 1 0 0 0 2 1 1 9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 312 0 1 0 0 7 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 336 1 2 0 0 0 0 0 2 1 0 2 1 0 0 2 1 1 4 0 0 1 0 0 3 360 5 1 1 0 0 0 1 0 1 2 0 0 0 1 0 0 0 4 0 1 1 1 0 0 384 0 1 1 0 6 1 0 0 3 1 0 0 1 0 0 1 1 1 0 0 2 0 1 1 408 1 2 0 0 1 0 3 0 1 0 0 0 1 0 0 1 1 1 0 3 0 0 0 0 432 0 3 0 0 0 0 0 0 1 4 1 2 1 0 0 0 0 4 0 1 0 0 0 0 456 0 1 0 0 1 0 0 0 3 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 480 0 2 0 1 1 2 1 1 0 0 0 0 2 0 0 0 1 0 1 0 1 0 1 0 504 1 4 1 1 0 0 0 1 5 3 0 0 3 0 1 1 0 4 0 0 0 1 0 0 528 4 1 1 1 0 0 0 0 0 4 0 1 2 0 0 0 1 1 0 0 5 1 0 1 552 0 0 0 0 2 1 0 0 0 2 0 1 0 0 1 1 7 0 0 0 0 0 1 2 576 5 3 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 3 1 0 0 0 1 1 600 1 0 1 1 1 1 0 0 0 1 0 0 3 0 0 0 1 1 2 0 1 0 1 0 624 1 3 1 0 0 0 0 1 1 3 0 1 0 0 1 0 2 0 0 0 1 0 0 0 648 0 4 0 0 1 0 1 0 2 1 0 2 0 0 0 0 0 3 0 1 1 0 0 0 672 0 1 0 1 1 1 0 0 0 4 0 0 3 0 1 1 0 1 0 0 0 0 1 0 696 1 0 0 0 1 2 2 1 1 0 1 0 1 0 1 0 1 1 0 1 2 0 0 1 720 1 3 0 0 0 0 0 0 1 3 3 0 0 1 0 0 0 4 1 1 2 0 0 1 744 0 4 1 0 1 0 1 0 0 0 1 0 1 2 0 1 0 0 0 0 1 1 1 0 768 2 0 0 0 1 0 0 2 1 1 1 0 0 0 0 1 4 2 0 0 0 0 0 0 792 4 3 0 0 0 0 0 0 0 3 0 0 2 0 1 0 1 0 1 1 1 1 1 0 816 0 1 0 0 0 0 0 0 1 0 0 1 1 2 0 0 0 1 1 0 5 0 0 0 840 1 3 1 0 0 0 0 0 1 3 2 0 0 0 1 0 1 2 0 0 0 0 0 1 864 0 0 0 0 2 0 0 1 1 9 0 0 1 0 1 0 0 0 1 0 0 2 0 0 888 0 1 1 0 5 0 0 0 0 1 1 3 1 2 0 0 0 1 1 0 1 1 0 0 912 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 1 0 1 0 936 1 0 0 1 3 0 0 0 0 2 0 0 0 0 0 0 1 3 2 0 0 0 0 0 960 3 1 1 0 3 0 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 984 0 2 0 0 2 0 0 0 0 0 0 0 1 1 0 0 3 3 0 0 2 0 0 0
Note that some of the numbers are not correctly justified lest they touch each other, e.g. the value x = 105 for k = 151.
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 . -1 -1 1 0 -1 . . -2 -2 -1 . -2 . . 1 0 -2 7 5 . . 3 . 24 -2 0 -1 -3 -3 . 19 -3 . -2 . 1 -3 -1 11 . 6 2 . -3 -2 . . . 48 1 0 -1 . -3 . 3 9 2 -2 . . . . . -3 -4 -4 . . -4 . . 5 72 -2 -4 . . -3 . . 45 -4 0 -1 . . . . . . -4 . -3 2 . 3 . 96 . 18 7 1 -4 -1 . . . 4 15 13 -3 . . . 9 -4 . . . 3 . 53 120 1 0 -1 . . -5 -5 -3 -4 -5 . 5 4 . -5 . 2 . 31 . . -5 3 1 144 0 -4 . . -3 . -5 105 -2 . 23 . 10 . . . . -5 . 33 -4 . . . 168 1 0 -1 -3 14 . -5 . . -2 . . . . . . 6 -4 7 . 2 -5 11 . 192 4 . . 1 -3 -1 3 5 . . . . -2 . -5 . -4 . . . . . . . 216 -6 -6 . . -6 . . -3 1 -6 -1 . . 3 . . -6 -4 . . 5 . . . 240 . -6 . . . . -5 . 2 28 . 25 -6 . . 1 0 -1 . . -4 . 3 . 264 -2 -6 . . 6 -5 . 17 8 . . 5 . . . . -6 2 7 -3 . . . . 288 1 -4 -1 . . . -5 9 10 -6 . . . . . 13 . . . . . . . . 312 . 6 . . -6 . . . -4 -5 . 1 0 -1 . . . 8 . . -2 7 3 . 336 4 -6 . . . . . -7 -7 . 15 -7 . . -5 -3 -7 -4 . . 32 . . -7 360 -6 0 -1 . . . 19 . -7 -2 . . . 3 . . . 4 . -7 26 -5 . . 384 . -6 7 . -4 35 . . -7 16 . . 70 . . 1 0 -1 . . 5 107 -7 408 -2 6 . . -6 . -5 . 17 . . . 4 . . 37 -7 -4 . -3 . . . . 432 . 2 . . . . . . 1 -6 -1 -7 10 . . . . -5 . 5 . . . . 456 . 3 . . 6 . . . -7 4 . . -3 15 . . -6 . . . 2 . . . 480 . 12 . 1 0 -1 -5 -7 . . . . -2 . . . 9 . 7 . 5 . 3 . 504 25 -6 47 13 . . . -3 -8 -8 . . -8 . 11 133 . -8 . . . -5 . . 528 -8 0 -1 85 . . . . . -8 . -7 -6 . . . 33 74 . . -8 3 . 5 552 . . . . -3 7 . . . -8 . 17 . . -5 9 -7 . . . . . 51 1 576 -8 -6 . . . . 43 . -2 . . . 22 . . . . -8 15 . . . 3 -7 600 10 . 23 -3 5 11 . . . -5 . . -8 . . . -6 2 7 . 14 219 . 624 1 0 -1 . . . . 89 -7 -8 269 . . 67 . -4 . . . 8 . . . 648 . 3 . . -3 . -5 . -8 -6 . 5 . . . . . 4 . -7 2 . . . 672 . 12 . 1 0 -1 . . . -8 . . -2 179 49 . -4 . . . . 11 . 696 34 . . . -6 -5 3 -3 -7 . 39 . -8 . 19 . 17 8 . 9 5 . . 13 720 4 2 . . . . . . 1 -9 -9 . . -9 . . . -8 -9 21 -4 . . -7 744 . -9 7 . 86 . -5 . . . -9 . -3 3 . 25 . . . . 10 -9 27 . 768 -8 . . . 12 . . 5 2 4 -9 . . . . 1 -7 -1 . . . . . . 792 -6 -9 . . . . . . . -8 . . 16 . 35 . 6 . -9 -3 149 7 3 . 816 . 24 . . . . . . 38 . . -7 13 -9 . . . 2 31 . -8 . . . 840 1 -6 -1 . . . . . -4 -2 -9 . . . -5 . 14 8 . . . . . 17 864 . . . . -3 . . 9 -7 -9 . . 37 . 11 . . . 7 . . 19 . . 888 . 30 71 . -6 . . . . 4 -9 1 0 -1 . . . -4 55 . -2 -5 . . 912 -8 . . . . . . -7 26 . . . . -9 . -3 . . . . 8 . 3 . 936 10 . . 13 6 . . . . -6 . . . . . . 9 -8 -9 . . . . . 960 1 0 -1 . -4 . -5 69 -7 -2 265 . 11 . . 12 14 . . . 15 . . 984 . -9 . . -3 . . . . . . . -8 3 . -10 -10 . -10 . . .
Here, for given k, one solution is one value of x so that x³ - k is a perfect square. About known solutions, see the introduction.
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 1 0 2 0 0 2 1 0 0 2 0 1 0 1 0 0 1 1 1 0 0 1 24 0 1 2 1 3 0 0 0 0 0 0 1 0 0 0 3 1 0 0 0 1 1 0 3 48 2 1 0 0 0 2 1 2 1 0 0 0 2 1 0 2 1 0 0 1 0 0 0 1 72 1 0 1 0 2 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 96 0 0 0 0 3 0 0 0 3 0 1 1 0 2 0 0 1 0 0 0 4 0 1 0 120 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 3 0 0 0 1 0 0 0 1 144 0 0 1 2 1 0 1 1 3 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 168 0 0 1 0 1 0 3 1 0 0 0 0 2 0 0 0 1 0 1 0 1 0 0 3 192 0 1 0 0 0 0 0 1 3 0 0 0 0 0 0 7 0 0 0 0 2 0 0 2 216 3 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 240 0 0 2 1 3 1 0 0 0 1 0 1 1 0 0 0 2 0 0 0 0 1 1 0 264 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0 1 0 0 0 0 1 0 1 1 288 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 4 1 0 0 0 312 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 336 0 0 0 1 0 0 1 5 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 360 0 0 2 0 2 0 1 0 7 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 384 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 408 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 9 432 1 2 0 0 0 0 0 1 3 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 456 0 0 0 3 0 0 0 1 1 0 0 0 0 0 0 2 0 1 0 0 2 1 0 0 480 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 6 0 0 1 0 0 0 8 504 1 0 1 0 4 0 0 2 1 0 0 1 4 0 0 0 0 0 0 0 1 0 0 0 528 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 552 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 576 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 2 0 0 1 1 0 1 600 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 2 0 0 1 0 0 0 1 0 624 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 4 0 0 0 0 0 0 0 1 648 6 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 672 0 1 2 0 6 0 0 0 2 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 696 0 0 0 0 0 0 1 1 3 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 720 1 0 0 0 0 1 1 1 2 1 0 0 3 0 0 1 0 0 0 0 0 1 0 0 744 1 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 1 0 0 0 1 0 1 2 768 0 1 0 0 0 0 1 7 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 792 0 0 0 0 0 1 0 0 1 0 2 0 3 0 0 0 1 0 0 0 0 0 0 0 816 0 1 0 0 0 0 0 0 0 0 0 0 5 0 0 2 1 0 0 0 0 0 0 0 840 0 0 0 0 0 0 0 7 0 0 1 0 0 0 0 0 2 0 0 1 1 0 0 0 864 0 0 1 0 1 0 0 0 0 0 0 2 0 0 0 1 0 0 1 0 0 0 0 1 888 3 0 1 1 1 0 0 2 0 0 0 0 2 1 0 0 0 0 0 0 1 0 0 0 912 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 2 1 0 0 1 936 1 0 0 0 0 0 0 0 5 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 960 1 0 0 0 4 0 0 0 1 0 1 1 1 1 1 2 0 0 0 0 5 0 0 0 984 3 0 0 0 0 0 0 2 0 0 0 0 2 0 0 6 1 0 0 0 0 0 0 1
Note that some of the numbers are not correctly justified lest they touch each other, e.g. the value x = 143 for k = 107. In two places, there was still not enough space: k = 971 with x = 1295 and k = 973 with x = 1297.
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 . 1 3 . 2 . . 2 2 . . 3 . 17 . 4 . . 3 7 6 . . 3 24 . 5 3 3 4 . . . . . . 11 . . . 4 14 . . . 5 21 . 6 48 4 65 . . . 9 7 4 18 . . . 4 5 . 4 4 . . 23 . . . 8 72 6 . 99 . 5 . . 20 . 13 . 27 . . . 7 . 5 . . . . . 6 96 . . . . 5 . . . 9 . 11 143 . 5 . . 8 . . . 5 . 7 . 120 . 5 . . 5 5 15 16 12 . . . . . . 6 . . . 47 . . . 14 144 . 195 7 197 175 8 6 9 . 51 . . . 10 . . . . . . . 6 168 . . 59 . 13 . 7 11 . . . . 6 . . . 62 163 . 8 . . 6 192 257 . . . . . 7 6 . . . . . . 6 . . . . 6 . . 6 216 6 . . . . . 7 8 . . . . . . . . 377 . 79 21 . . 15 240 . . 11 7 14 9 . . . 25 . 83 16 . . . 8 . . . . 13 7 . 264 . . . . . . 39 10 . . . . . 41 . 7 . . . . 12 . 23 8 288 9 17 . . 98 57 7 . . . 19 399 401 . . . . . 7 102 . . . 312 . . . . 8 . 7 . . . . . 10 . . 7 . 9 . . . . 7 . 336 . . . 7 . . 7 7 . . . . 13 . 15 . . . 119 18 . . 12 360 . . 27 . 29 11815 . 8 . 11 123 . . . 10 . . . . . . . . 384 . . . . . . . 8 . . . . . . . . . . . . . 9 . . 408 . . . . 8 . . 26 . . . . . . . . 10 21 . . . . . 8 432 12 13 . . . . . 35 9 . . . . . . 22 8 . . . . . 114 456 . . . 15 . . . 8 129 . . . . . . 10 . 9 . . 8 37 . . 480 . . . . . . . 8 . . 11 . . . . 34 8 . 167 . . . 8 504 9 675 . 8 . . 8 8 . 171 10 . . . . . . . 45 . . . 528 . . . . . 9 . 14 . . . . . . . . . . 43 11 . . 31 . 552 . . . . . 17 . 10 9 . . . . . 15 . . . . . 12 . . . 576 . . . 194 . . 38 . 9 115 783 785 . . . 33 . 198 13 . 24 600 10 . 11 . 20 . . . 9 . . . 21 . . 16 . . 19 . . 127 . 624 . . . . 14 9 . 58 . . . . 28 . . 10 . . . . . . . 42 648 9 . . . 53 . . 11 . . . . . . . 94 . 9 223 . . . 15 672 . 29 75 . 10 . . . 9 . 227 . 49 . . 17 . . . . 9 . . 696 . . . . . 103 112 9 . 11 . . . . 10 . 9 . . . . 23 14 720 9 . . . . 9 55 32 9 9 . . 16 . 106 . . . . . 25 . . 744 10 . . . . . . . . 13 . 11 30 . . 254 . . . 92 1183 12 768 1025 . . . . 15 10 258 . . . . . 47 . . . . . . . . 18 792 . . . . . 21 . . 41 . 11 . 10 . . . 14 . . . . . . . 816 . 17 . . . . . . . . . . 12 . . 10 68 . . . . . . . 840 . . . . . . . 11 . . 35 . . . . . 10 . 287 36 . . . 864 . 1155 1157 . . . . . . 15 . . . 10 . . 51 . . . . 12 888 34 . 11 31 56 . . 14 . . . . 10 13 . . . . . . 77 . . . 912 . . 27 . . . . 10 . . . . 37 . . 28 . . 19 11 18 . . 26 936 10 . . . . . . . 12 141 . . . . . 10 . 187 . . . . . 960 16 . . . 10 . . . 33 . 11 ** 13 ** 15 10 . . . . 14 . . . 984 10 . . . . . . 10 . . . . 10 . . 10 10 . . . . . . 11
This table contains the solutions for 0 < | k | < 1008 and x <= 1010 for those k for which there is more than one x satifying the equation. The values of x for those k having a unique corresponding x can be found in table 2 for k > 0 and in table 4 for k < 0.
k #sol (x,±y) 1 3 (-1,0), (0,1), (2,3) -4 2 (2,2), (5,11) -7 2 (2,1), (32,181) 8 4 (-2,0), (1,3), (2,4), (46,312) 9 5 (-2,1), (0,3), (3,6), (6,15), (40,253) -11 2 (3,4), (15,58) 12 2 (-2,2), (13,47) 15 2 (1,4), (109,1138) 17 8 (-2,3), (-1,4), (2,5), (4,9), (8,23), (43,282), (52,375), (5234,378661) 24 4 (-2,4), (1,5), (10,32), (8158,736844) -26 2 (3,1), (35,207) 28 2 (-3,1), (2,6) -28 3 (4,6), (8,22), (37,225) 36 4 (-3,3), (0,6), (4,10), (12,42) 37 3 (-1,6), (3,8), (243,3788) -39 3 (4,5), (10,31), (22,103) 44 2 (-2,6), (5,13) -47 3 (6,13), (12,41), (63,500) -48 2 (4,4), (28,148) -53 2 (9,26), (29,156) -55 2 (4,3), (56,419) 57 3 (-2,7), (4,11), (7,20) -60 2 (4,2), (136,1586) 63 2 (-3,6), (1,8) -63 2 (4,1), (568,13537) 64 3 (-4,0), (0,8), (8,24) 65 4 (-4,1), (-1,8), (14,53), (584,14113) 68 2 (-4,2), (152,1874) 73 6 (-4,3), (2,9), (3,10), (6,17), (72,611), (356,6717) -76 2 (5,7), (101,1015) 80 4 (-4,4), (1,9), (4,12), (44,292) 89 4 (-4,5), (-2,9), (10,33), (55,408) 100 6 (-4,6), (0,10), (5,15), (20,90), (24,118), (2660,137190) -100 3 (5,5), (10,30), (34,198) 101 2 (-1,10), (95,926) -104 3 (9,25), (30,164), (42,272) 108 4 (-3,9), (-2,10), (6,18), (366,7002) -109 2 (5,4), (145,1746) 113 6 (-4,7), (2,11), (8,25), (11,38), (26,133), (422,8669) -116 4 (5,3), (6,10), (38,234), (158,1986) 121 2 (0,11), (12,43) 128 2 (-4,8), (17,71) 129 3 (-5,2), (-2,11), (16,65) -135 3 (6,9), (19,82), (24,117) 141 3 (-5,4), (7,22), (3067,169852) 145 4 (-4,9), (-1,12), (6,19), (54,397) -147 2 (7,14), (91,868) 148 2 (-3,11), (21,97) -152 3 (6,8), (17,69), (26,132) 161 4 (-5,6), (2,13), (4,15), (190,2619) 164 3 (-4,10), (5,17), (8,26) 168 2 (1,13), (22,104) 169 3 (0,13), (3,14), (78,689) 171 3 (-3,12), (9,30), (937,28682) -174 3 (7,13), (799,22585), (5215,376601) -180 2 (6,6), (69,573) -191 3 (6,5), (255,4072), (810,23053) 196 3 (-3,13), (0,14), (84,770) 197 2 (-1,14), (19,84) 198 2 (3,15), (27,141) -200 3 (6,4), (9,23), (66,536) 204 2 (-2,14), (13,49) -207 7 (6,3), (12,39), (18,75), (31,172), (312,5511), (331,6022), (367806,223063347) 208 2 (-4,12), (12,44) -212 2 (6,2), (717,19199) -215 2 (6,1), (2904,156493) -216 3 (6,0), (10,28), (33,189) 217 5 (-6,1), (2,15), (8,27), (39,244), (2928,158437) 220 2 (-6,2), (741,20171) 225 13 (-6,3), (-5,10), (0,15), (4,17), (6,21), (10,35), (15,60), (30,165), (60,465), (180,2415), (336,6159), (351,6576), (720114,611085363) 232 2 (-6,4), (9,31) 233 4 (-4,13), (-2,15), (7,24), (202,2871) -242 2 (11,33), (323,5805) -244 3 (14,50), (22,102), (325,5859) 248 2 (2,16), (41,263) 252 5 (-6,6), (-3,15), (18,78), (58,442), (93,897) -256 2 (8,16), (20,88) 260 4 (-4,14), (4,18), (16,66), (29,157) 269 2 (-5,12), (11,40) -277 2 (41,262), (317,5644) 281 3 (2,17), (14,55), (20,91) 289 3 (-4,15), (0,17), (68,561) 294 2 (-5,13), (211,3065) 297 9 (-6,9), (-2,17), (3,18), (4,19), (12,45), (34,199), (48,333), (1362,50265), (93844,28748141) -307 4 (7,6), (11,32), (71,598), (939787,911054064) 316 7 (-6,10), (-3,17), (2,18), (5,21), (50,354), (90,854), (162,2062) 337 2 (-6,11), (24,119) 343 2 (-7,0), (21,98) -343 5 (7,0), (8,13), (14,49), (28,147), (154,1911) 346 2 (15,61), (159,2005) 350 2 (-5,15), (11,41) 353 4 (-4,17), (2,19), (38,235), (117188,40116655) 359 3 (-7,4), (5,22), (73,624) 360 5 (-6,12), (1,19), (6,24), (9,33), (346,6436) -362 2 (27,139), (483,10615) -364 2 (29,155), (485,10681) -368 7 (8,12), (9,19), (24,116), (32,180), (48,332), (944,29004), (1313,47577) 369 2 (-2,19), (10,37) -375 2 (10,25), (16,61) 377 4 (4,21), (22,105), (23,112), (47044,10203669) 388 6 (-4,18), (-3,19), (8,30), (12,46), (341,6297), (1376,51042) -391 2 (8,11), (50,353) 392 3 (-7,7), (2,20), (14,56) 404 2 (5,23), (13,51) -405 2 (9,18), (61,476) 409 2 (6,25), (18,79) 414 3 (-5,17), (3,21), (3075,170517) -424 3 (10,24), (17,67), (142,1692) 427 3 (-3,20), (9,34), (30333,5282908) -431 9 (8,9), (11,30), (20,87), (30,163), (36,215), (138,1621), (150,1837), (575,13788), (3903,243836) 433 3 (2,21), (11,42), (36,217) -433 2 (13,42), (577,13860) -440 3 (9,17), (14,48), (146,1764) 441 4 (-6,15), (0,21), (7,28), (42,273) 443 2 (-7,10), (77,676) -448 2 (8,8), (128,1448) 449 4 (-5,18), (-2,21), (8,31), (176,2335) -459 3 (15,54), (19,80), (67,548) 464 3 (-7,11), (-4,20), (20,92) -471 2 (10,23), (4528,304691) -476 2 (8,6), (240,3718) 481 2 (12,47), (27,142) 485 2 (-1,22), (31,174) 492 2 (-2,22), (118,1282) -496 6 (8,4), (16,60), (25,123), (40,252), (113,1201), (560,13252) -503 8 (8,3), (12,35), (18,73), (23,108), (44,291), (134,1551), (294,5041), (1008,32003) 505 4 (-6,17), (-4,21), (14,57), (371,7146) -508 4 (8,2), (284,4786), (677,17615), (2288,109442) -511 2 (8,1), (9200,882433) 512 5 (-8,0), (-7,13), (4,24), (8,32), (184,2496) 513 3 (-8,1), (6,27), (9232,887041) 516 3 (-8,2), (40,254), (2320,111746) -516 4 (10,22), (13,41), (181,2435), (418,8546) 521 4 (-8,3), (2,23), (10,39), (1040,33539) 528 4 (-8,4), (1,23), (16,68), (592,14404) -535 2 (14,47), (2156,100109) 537 4 (-8,5), (-2,23), (19,86), (124,1381) 540 2 (-6,18), (21,99) 548 5 (-8,6), (-4,22), (28,150), (61,477), (272,4486) 556 2 (-3,23), (30,166) 561 2 (-8,7), (4,25) 568 7 (-7,15), (2,24), (6,28), (18,80), (57,431), (161,2043), (1137,38339) 575 2 (1,24), (29,158) 576 5 (-8,8), (0,24), (12,48), (24,120), (160,2024) 577 3 (-6,19), (-1,24), (8,33) 593 3 (-8,9), (-4,23), (76,663) -593 2 (33,188), (909,27406) 612 3 (-8,10), (4,26), (13,53) -615 2 (16,59), (46,311) 618 2 (7,31), (421351,273505487) 625 3 (0,25), (6,29), (75,650) 633 3 (-8,11), (-2,25), (46,313) -639 4 (10,19), (12,33), (27,138), (654,16725) 640 2 (-4,24), (9,37) -648 6 (9,9), (18,72), (22,100), (54,396), (97,955), (1809,76941) 649 4 (3,26), (20,93), (26,135), (1398,52271) 656 2 (-8,12), (80,716) 659 2 (5,28), (5393,396046) 665 3 (4,27), (16,69), (44,293) -674 2 (75,649), (899,26955) -676 6 (10,18), (13,39), (26,130), (130,1482), (338,6214), (901,27045) -680 2 (9,7), (8394,769048) 681 4 (-8,13), (7,32), (10,41), (82,743) 684 3 (-2,26), (6,30), (45,303) 701 2 (-5,24), (247,3882) 702 2 (3,27), (139,1639) -704 3 (9,5), (12,32), (60,464) 716 2 (5,29), (110,1154) 721 3 (2,27), (15,64), (32,183) -728 2 (9,1), (74,636) 729 3 (-9,0), (0,27), (18,81) 730 3 (-9,1), (-1,27), (231,3511) -732 3 (16,58), (52,374), (76,662) 737 4 (-8,15), (-2,27), (14,59), (59,454) 740 2 (-4,26), (3296,189226) 745 4 (-9,4), (-6,23), (6,31), (96,941) -755 3 (11,24), (39,242), (891,26596) 757 2 (3,28), (2063,93702) -767 2 (12,31), (1023,32720) 768 2 (-8,16), (52,376) 775 2 (5,30), (41,264) -775 7 (10,15), (19,78), (20,85), (70,585), (80,715), (16750,2167815), (26530,4321215) -782 2 (47,321), (87,811) 784 4 (-7,21), (0,28), (8,36), (56,420) 785 2 (-1,28), (11,46) 792 4 (-6,24), (-2,28), (9,39), (177,2355) 793 3 (-9,8), (-4,27), (62,489) 801 3 (-8,17), (-5,26), (22,107) -802 2 (11,23), (307,5379) 804 2 (16,70), (88,826) -804 3 (10,14), (82,742), (157,1967) -828 5 (12,30), (13,37), (24,114), (108,1122), (4464,298254) 829 2 (-9,10), (23,114) -831 2 (10,13), (220,3263) 836 5 (-8,18), (4,30), (5,31), (20,94), (3712,226158) 841 3 (-6,25), (0,29), (87,812) -847 7 (11,22), (16,57), (22,99), (86,797), (88,825), (638,16115), (657547,533200074) 849 3 (-2,29), (10,43), (28,151) 850 2 (-9,11), (15,65) -856 2 (10,12), (230,3488) 857 2 (8,37), (104,1061) 868 2 (-3,29), (36,218) 873 9 (-9,12), (-8,19), (3,30), (6,33), (12,51), (66,537), (178,2375), (432,8979), (978,30585) -875 2 (15,50), (291,4964) 885 2 (19,88), (68239,17825798) -888 3 (34,196), (73,623), (334,6104) 892 5 (-6,26), (2,30), (18,82), (29,159), (53,387) -895 2 (14,43), (116,1249) 899 3 (1,30), (5,32), (11393,1216066) -900 2 (10,10), (205,2935) 901 2 (-1,30), (467,10092) -914 2 (27,137), (1779,75035) 927 2 (-3,30), (33,192) -931 2 (11,20), (23,106) 940 3 (6,34), (21,101), (54,398) -944 5 (12,28), (17,63), (20,84), (164,2100), (2364,114940) 945 2 (-6,27), (16,71) 953 3 (-8,21), (2,31), (7,36) 954 2 (-9,15), (63,501) 960 3 (1,31), (4,32), (436,9104) 964 3 (-4,30), (5,33), (48,334) -964 4 (10,6), (322,5778), (605,14881), (4402,292062) -975 2 (10,5), (880,26105) -980 5 (14,42), (21,91), (29,153), (126,1414), (326,5886) -984 3 (10,4), (25,121), (769,21325) 985 2 (-9,16), (1011,32146) 988 2 (-3,31), (42,274) -991 2 (10,3), (2480,123503) -996 2 (10,2), (5605,419627) -999 6 (10,1), (12,27), (40,251), (147,1782), (174,2295), (22480,3370501) 1000 3 (-10,0), (-6,28), (65,525) 1001 3 (-10,1), (92,883), (22520,3379501) 1004 2 (-10,2), (5645,424127)
This table contains the solutions for 1008 <= | k | <= 10000 and x <= 1010 for those k for which there are at least four x satifying the equation. The values of x for those k having less corresponding x can only be found via the big table.
k #sol (x,±y) 1009 5 (-10,3), (6,35), (8,39), (1355,49878), (2520,126503) 1016 7 (-10,4), (2,32), (17,77), (22,108), (25,129), (1330,48504), (6194,487480) 1025 16 (-10,5), (-5,30), (-4,31), (-1,32), (4,33), (10,45), (20,95), (40,255), (50,355), (64,513), (155,1930), (166,2139), (446,9419), (920,27905), (3631,218796), (3730,227805) -1071 6 (15,48), (16,55), (18,69), (1488,57399), (3810,235173), (10578,1087941) 1088 9 (-8,24), (-4,32), (1,33), (8,40), (16,72), (32,184), (172,2256), (208,3000), (20936,3029288) 1100 4 (-10,10), (5,35), (14,62), (245,3835) 1116 4 (-6,30), (-3,33), (10,46), (450,9546) -1192 4 (17,61), (26,128), (398,7940), (153761,60293333) -1208 4 (18,68), (78,688), (249,3929), (402,8060) 1224 4 (1,35), (18,84), (30,168), (393,7791) 1225 5 (-10,15), (0,35), (14,63), (35,210), (120,1315) 1296 4 (-8,28), (0,36), (9,45), (72,612) 1304 6 (-7,31), (-2,36), (10,48), (41,265), (350,6548), (2665,137577) 1305 9 (-9,24), (-6,33), (4,37), (6,39), (24,123), (36,219), (51,366), (376,7291), (1434,54303) 1412 4 (-11,9), (-8,30), (68,562), (188,2578) -1439 8 (12,17), (15,44), (20,81), (32,177), (54,395), (122,1347), (590,14331), (445650,297502669) 1513 4 (-9,28), (2,39), (8,45), (186,2537) 1536 5 (-8,32), (4,40), (25,131), (40,256), (32632,5894752) 1548 4 (-3,39), (6,42), (78,690), (493278,346447650) 1585 4 (-6,37), (-4,39), (11,54), (1454,55443) -1588 4 (14,34), (29,151), (2117,97405), (2933,158843) -1607 4 (12,11), (18,65), (51,362), (3642,219791) -1664 4 (12,8), (17,57), (140,1656), (705,18719) -1692 4 (12,6), (21,87), (48,330), (1272,45366) -1712 6 (12,4), (33,185), (36,212), (132,1516), (156,1948), (2892,155524) -1719 4 (12,3), (30,159), (39,240), (5160,370659) -1724 5 (12,2), (24,110), (45,299), (1749,73145), (11640,1255826) -1727 7 (12,1), (27,134), (42,269), (56,417), (278,4635), (2303,110520), (46632,10069921) 1729 5 (-12,1), (-10,27), (191,2640), (218,3219), (46680,10085473) 1737 11 (-12,3), (-8,35), (-6,39), (3,42), (18,87), (54,399), (67,550), (84,771), (1383,51432), (5208,375843), (572034,432646071) 1753 4 (-12,5), (-9,32), (12,59), (102,1031) 1764 5 (-12,6), (0,42), (21,105), (28,154), (1320,47958) 1772 5 (-11,21), (-2,42), (13,63), (38,238), (62,490) 1809 6 (-12,9), (6,45), (10,53), (15,72), (148,1801), (600,14697) 1872 7 (-12,12), (4,44), (9,51), (12,60), (153,1893), (348,6492), (1348,49492) 1897 4 (-12,13), (-6,41), (99,986), (228,3443) 1900 6 (-10,30), (5,45), (6,46), (30,170), (45,305), (8270,752070) 1961 4 (-10,31), (4,45), (7,48), (950,29281) -1999 6 (22,93), (40,249), (74,635), (100,999), (299,5170), (562,13323) 2024 5 (-10,32), (-7,41), (1,45), (26,140), (58,444) 2025 4 (-9,36), (0,45), (10,55), (90,855) 2033 4 (-8,39), (-2,45), (11,58), (206,2957) -2036 4 (21,85), (30,158), (678,17654), (918,27814) 2052 6 (-12,18), (-3,45), (4,46), (24,126), (64,514), (168,2178) -2071 6 (16,45), (20,77), (28,141), (35,202), (118,1281), (2338,113049) 2089 14 (-12,19), (-10,33), (-4,45), (3,46), (8,51), (18,89), (60,467), (71,600), (80,717), (170,2217), (183,2476), (698,18441), (9278,893679), (129968,46854861) 2185 4 (6,49), (36,221), (39,248), (156,1949) -2188 5 (13,3), (29,149), (53,383), (2917,157545), (22549,3386031) 2201 5 (-13,2), (2,47), (20,101), (32,187), (524,11995) 2241 6 (-6,45), (-5,46), (12,63), (30,171), (127,1432), (8292,755073) 2250 4 (-9,39), (15,75), (31,179), (10119,1017903) 2296 5 (-10,36), (2,48), (9,55), (57,433), (534,12340) 2304 5 (-12,24), (0,48), (16,80), (48,336), (105,1077) 2305 4 (-1,48), (24,127), (26,141), (17906,2396061) 2312 5 (-2,48), (17,85), (34,204), (89,841), (238,3672) -2351 10 (15,32), (18,59), (30,157), (48,329), (276,4585), (378,7349), (558,13181), (651,16610), (3135,175532), (13035,1488218) 2368 5 (-7,45), (-4,48), (12,64), (41,267), (972,30304) 2404 4 (-12,26), (8,54), (20,102), (141,1675) 2521 4 (-13,18), (-10,39), (72,613), (384,7525) 2537 4 (-8,45), (4,51), (68,563), (166864,68162259) -2548 4 (14,14), (22,90), (133,1533), (413,8393) -2575 4 (14,13), (16,39), (139,1638), (646,16419) 2600 5 (-10,40), (1,51), (10,60), (25,135), (134,1552) 2628 9 (-12,30), (-8,46), (-3,51), (12,66), (16,82), (36,222), (96,942), (381,7437), (1341,49107) -2708 4 (14,6), (902,27090), (2373,115597), (6134,480414) 2745 4 (-14,1), (4,53), (19,98), (86464,25424533) 2793 4 (-14,7), (7,56), (16,83), (1792,75859) 2817 10 (-12,33), (-6,51), (-2,53), (18,93), (24,129), (27,150), (214,3131), (684,17889), (1327,48340), (8598,797253) 2852 4 (-11,39), (4,54), (8,58), (772,21450) -2888 4 (17,45), (38,228), (114,1216), (209,3021) 2913 4 (-14,13), (-8,49), (58,445), (286,4837) 2969 4 (-14,15), (8,59), (10,63), (3703,225336) 3012 4 (-11,41), (-8,50), (28,158), (292,4990) 3025 11 (-10,45), (-6,53), (0,55), (11,66), (15,80), (20,105), (44,297), (66,539), (110,1155), (330,5995), (1334,48723) 3033 8 (-14,17), (-9,48), (-2,55), (6,57), (12,69), (52,379), (192,2661), (423,8700) -3051 5 (15,18), (51,360), (115,1232), (303,5274), (353103,209822526) 3097 4 (-13,30), (-12,37), (74,639), (4514,303279) 3132 4 (-6,54), (13,73), (34,206), (14493,1744767) 3185 5 (-14,21), (4,57), (14,77), (224,3353), (7114,600027) 3209 4 (-10,47), (8,61), (23,124), (38,241) -3231 4 (15,12), (18,51), (136,1585), (408,8241) -3332 6 (18,50), (21,77), (42,266), (93,895), (882,26194), (10437,1066261) 3356 6 (-11,45), (2,58), (5,59), (10,66), (610,15066), (1514,58910) -3376 4 (20,68), (73,621), (76,660), (182180,77759068) 3384 4 (-15,3), (6,60), (18,96), (145,1747) 3428 4 (-8,54), (-4,58), (13,75), (796,22458) -3471 5 (16,25), (160,2023), (235,3602), (5230,378227), (43510,9075773) 3489 5 (-5,58), (-2,59), (10,67), (1528,59729), (1978,87971) 3592 5 (-7,57), (2,60), (98,972), (174,2296), (1577,62625) 3600 4 (-15,15), (0,60), (24,132), (40,260) -3623 4 (18,47), (24,101), (39,236), (2334,112759) 3648 4 (-8,56), (16,88), (28,160), (4153,267635) 3664 8 (-15,17), (-12,44), (-4,60), (20,108), (33,199), (68,564), (108,1124), (185,2517) 3713 4 (2,61), (8,65), (32,191), (431,8948) 3736 4 (-15,19), (17,93), (62,492), (90,856) 3753 6 (-12,45), (6,63), (7,64), (42,279), (16116,2045907), (5024238,11261735055) -3807 11 (16,17), (18,45), (27,126), (36,207), (126,1413), (142,1691), (162,2061), (316,5617), (927,28224), (1306,47197), (37368,7223535) 3844 8 (-12,46), (0,62), (5,63), (8,66), (93,899), (248,3906), (620,15438), (1836,78670) -3896 11 (18,44), (30,152), (33,179), (41,255), (50,348), (110,1152), (465,10027), (545,12723), (878,26016), (1298,46764), (4398,291664) -3952 5 (16,12), (17,31), (328,5940), (992,31244), (1816,77388) -3967 5 (47,316), (146,1763), (248,3905), (332,6049), (1286,46117) 3969 9 (-14,35), (-5,62), (0,63), (18,99), (28,161), (36,225), (63,504), (270,4437), (630,15813) -4031 5 (20,63), (63,496), (86,795), (120,1313), (3638,219429) 4032 4 (-12,48), (4,64), (9,69), (57,435) 4033 4 (-4,63), (26,147), (27,154), (90548,27246975) -4080 5 (16,4), (49,337), (64,508), (1096,36284), (9184,880132) -4087 7 (16,3), (22,81), (131,1498), (158,1985), (308,5405), (1082,35591), (16352,2091011) 4100 4 (-16,2), (5,65), (20,110), (36896,7087106) 4112 10 (-16,4), (-8,60), (8,68), (17,95), (64,516), (73,627), (88,828), (2984,163004), (9248,889348), (15992,2022340) 4160 4 (-16,8), (-4,64), (56,424), (2336,112904) 4217 4 (-16,11), (2,65), (23,128), (44,299) -4220 6 (21,71), (24,98), (36,206), (56,414), (176,2334), (869,25617) 4265 4 (-16,13), (-14,39), (199,2808), (706,18759) 4312 10 (-7,63), (-6,64), (9,71), (14,84), (42,280), (78,692), (113,1203), (609,15029), (938,28728), (16142,2050860) 4329 7 (-12,51), (-9,60), (3,66), (10,73), (30,177), (48,339), (1390,51823) 4356 8 (-11,55), (-8,62), (0,66), (12,78), (45,309), (132,1518), (264,4290), (1540,60434) 4364 5 (-10,58), (-2,66), (5,67), (13,81), (358,6774) 4420 4 (-16,18), (-4,66), (36,226), (69,577) 4481 12 (-10,59), (-8,63), (-5,66), (2,67), (14,85), (22,123), (32,193), (175,2316), (364,6945), (640,16191), (1862,80347), (3739,228630) -4598 4 (23,87), (47,315), (543,12653), (1479,56879) 4600 5 (-15,35), (-10,60), (9,73), (50,360), (386,7584) 4625 5 (-16,23), (-1,68), (10,75), (26,149), (160,2025) 4672 7 (-16,24), (8,72), (12,80), (24,136), (137,1605), (288,4888), (1424,53736) 4721 4 (-16,25), (-10,61), (62,493), (290,4939) -4743 4 (18,33), (19,46), (132,1515), (6204,488661) -4799 7 (24,95), (27,122), (30,149), (72,607), (90,851), (222,3307), (6399,511880) 4825 7 (-16,27), (-9,64), (-4,69), (6,71), (14,87), (84,773), (194,2703) 4964 5 (-4,70), (8,74), (140,1658), (27320,4515658), (1588448,2001978934) 4977 8 (-17,8), (-12,57), (-6,69), (4,71), (22,125), (72,615), (198,2787), (459,9834) 5057 4 (-17,12), (-16,31), (394,7821), (1882,81645) -5095 5 (19,42), (44,283), (64,507), (106,1089), (1274,45473) 5113 4 (-13,54), (6,73), (8,75), (5462,403671) 5120 4 (-16,32), (4,72), (16,96), (176,2336) -5296 5 (20,52), (68,556), (113,1199), (1340,49052), (10916,1140500) -5319 4 (22,73), (60,459), (114,1215), (787,22078) 5328 6 (-12,60), (1,73), (12,84), (36,228), (121,1333), (233796,113046108) 5400 8 (-15,45), (-6,72), (10,80), (25,145), (30,180), (129,1467), (190,2620), (4170,269280) 5412 4 (-8,70), (4,74), (148,1802), (1775104,2365024826) -5508 4 (18,18), (202,2870), (693,18243), (954,29466) -5543 6 (18,17), (24,91), (32,165), (119,1296), (282,4735), (968,30117) 5561 4 (-13,58), (4,75), (10,81), (662,17033) 5624 5 (-10,68), (1,75), (118,1284), (178,2376), (3425,200443) 5696 5 (-16,40), (-8,72), (17,103), (40,264), (220,3264) 5776 5 (-15,49), (0,76), (24,140), (57,437), (1824,77900) -5823 4 (18,3), (28,127), (123,1362), (26208,4242783) 5832 4 (-18,0), (9,81), (18,108), (414,8424) 5841 10 (-18,3), (-8,73), (-6,75), (12,87), (15,96), (60,471), (75,654), (3694,224515), (5490,406779), (26280,4260279) 5868 4 (-18,6), (6,78), (21,123), (6597,535821) -5872 4 (32,164), (56,412), (296,5092), (488,10780) -5887 4 (22,69), (58,435), (116,1247), (667,17226) 5913 5 (-18,9), (-9,72), (76,667), (108,1125), (2952,160389) 5937 4 (-17,32), (-2,77), (28,167), (724,19481) -5975 5 (20,45), (30,145), (50,345), (99,982), (311,5484) 5976 4 (-18,12), (-15,51), (202,2872), (474,10320) -6012 4 (21,57), (72,606), (76,658), (99708,31484370) 6057 5 (-18,15), (3,78), (7,80), (24,141), (138,1623) 6084 4 (-12,66), (0,78), (13,91), (156,1950) 6092 4 (-11,69), (-2,78), (14,94), (734,19886) 6121 4 (-18,17), (-16,45), (230,3489), (995,31386) 6137 4 (-8,75), (19,114), (38,247), (304,5301) 6184 4 (-15,53), (-10,72), (6,80), (650,16572) -6236 6 (20,42), (21,55), (60,458), (128,1446), (596,14550), (9368,906714) 6372 5 (-11,71), (12,90), (48,342), (84,774), (829,23869) 6400 7 (-16,48), (-15,55), (0,80), (20,120), (80,720), (96,944), (10640,1097520) -6400 4 (20,40), (40,240), (136,1584), (185,2515) -6479 6 (20,39), (47,312), (80,711), (102,1027), (834,24085), (6059,471630) 6489 5 (-12,69), (18,111), (30,183), (58,449), (120,1317) 6513 5 (-17,40), (16,103), (22,131), (1483,57110), (12652,1423111) -6551 4 (26,105), (30,143), (368,7059), (3788,233139) 6561 5 (-18,27), (0,81), (27,162), (54,405), (360,6831) 6616 5 (-18,28), (-6,80), (105,1079), (362,6888), (494,10980) 6625 6 (-10,75), (-4,81), (15,100), (24,143), (44,303), (690,18125) -6691 4 (23,74), (155,1928), (695,18322), (77963,21768716) 6713 5 (-14,63), (7,84), (8,85), (56,427), (28546,4823007) -6823 4 (19,6), (28,123), (122,1345), (434,9041) 6840 4 (-14,64), (6,84), (9,87), (3234,183912) 6856 6 (-18,32), (-15,59), (30,184), (114,1220), (942,28912), (27564105,144715764559) -6908 5 (48,322), (93,893), (144,1726), (564,13394), (588,14258) -6911 4 (20,33), (38,219), (138,1619), (9215,884592) 6912 5 (-12,72), (-8,80), (24,144), (33,207), (1464,56016) 6921 6 (-18,33), (10,89), (12,93), (34,215), (150,1839), (8259,750570) 6940 4 (-19,9), (-6,82), (29,177), (74,642) 7029 4 (-17,46), (3,84), (15,102), (6675,545352) 7057 11 (-18,35), (-12,73), (-1,84), (8,87), (14,99), (48,343), (68,567), (107,1110), (354,6661), (939,28774), (1674,68491) 7084 4 (-19,15), (-10,78), (78,694), (40958,8289114) 7100 4 (-14,66), (5,85), (10,90), (1210,42090) -7100 5 (20,30), (24,82), (125,1395), (360,6830), (740,20130) 7232 8 (-16,56), (-7,83), (8,88), (32,200), (44,304), (104,1064), (1688,69352), (10049,1007359) 7353 7 (-18,39), (-12,75), (6,87), (16,107), (66,543), (87,816), (391,7732) -7375 4 (20,25), (26,101), (395,7850), (536,12409) 7388 5 (-19,23), (2,86), (26,158), (58,450), (277,4611) -7424 5 (20,24), (24,80), (152,1872), (585,14149), (632,15888) -7516 5 (20,22), (56,410), (68,554), (160,2022), (556,13110) 7528 4 (6,88), (57,439), (3321,191383), (1664442,2147350804) 7568 8 (-8,84), (-7,85), (1,87), (16,108), (56,428), (152,1876), (368,7060), (28576,4830612) -7600 4 (20,20), (161,2041), (500,11180), (860,25220) -7740 4 (21,39), (24,78), (124,1378), (1476,56706) -7775 5 (20,15), (26,99), (150,1835), (315,5590), (1560,61615) 7785 8 (-14,71), (-9,84), (-6,87), (16,109), (24,147), (34,217), (984,30867), (3264,186477) -7804 7 (20,14), (32,158), (37,207), (92,878), (112,1182), (5260,381486), (10405,1061361) 7857 4 (-18,45), (4,89), (18,117), (11734,1271069) -7900 4 (20,10), (44,278), (80,710), (3560,212410) 7948 6 (-19,33), (-18,46), (-3,89), (102,1034), (206,2958), (6278,497430) -7975 4 (20,5), (34,177), (115,1230), (14360,1720805) 8004 4 (-20,2), (13,101), (16,110), (90040,27018002) 8025 4 (-20,5), (10,95), (19,122), (14440,1735205) 8036 4 (-20,6), (4,90), (32,202), (10040,1006006) 8073 4 (-14,73), (3,90), (12,99), (426,8793) 8100 5 (-20,10), (0,90), (36,234), (45,315), (3640,219610) 8136 4 (-18,48), (-15,69), (82,748), (1554,61260) 8225 11 (-20,15), (-10,85), (-5,90), (16,111), (50,365), (74,643), (79,708), (130,1485), (1240,43665), (1640,66415), (794740,708496335) 8281 9 (-13,78), (0,91), (14,105), (39,260), (42,287), (140,1659), (182,2457), (9282,894257), (41847,8560448) 8289 7 (-20,17), (-12,81), (-2,91), (15,108), (46,325), (58,451), (96,945) 8396 4 (-10,86), (22,138), (37,243), (85,789) 8400 4 (-20,20), (4,92), (25,155), (940,28820) 8433 6 (-18,51), (-8,89), (6,93), (48,345), (171,2238), (222,3309) 8452 4 (-16,66), (-12,82), (44,306), (1397,52215) -8532 7 (21,27), (22,46), (46,298), (102,1026), (318,5670), (541,12583), (5286,384318) 8569 4 (-10,87), (23,144), (36,235), (110781386,1166004406095) -8623 5 (22,45), (68,553), (79,696), (178,2373), (704,18679) 8673 6 (-14,77), (16,113), (22,139), (28,175), (532,12271), (1726,71707) 8676 9 (-20,26), (-3,93), (12,102), (24,150), (60,474), (72,618), (160,2026), (405,8151), (8149,735625) -8712 6 (22,44), (33,165), (66,528), (81,723), (306,5352), (342,6324) 8784 4 (-20,28), (-12,84), (81,735), (228,3444) 8809 5 (3,94), (6,95), (18,121), (300,5197), (3960,249197) 8828 4 (-14,78), (2,94), (13,105), (301,5223) 8857 4 (-18,55), (-16,69), (83,762), (3878,241497) 8900 12 (-20,30), (-11,87), (-4,94), (5,95), (16,114), (20,130), (40,270), (200,2830), (340,6270), (440,9230), (3685,223695), (23245,3544005) 8961 4 (-20,31), (-5,94), (4,95), (442,9293) 9000 5 (-15,75), (6,96), (10,100), (54,408), (2385,116475) 9024 5 (-20,32), (1,95), (25,157), (28,176), (12268,1358816) 9052 5 (-6,94), (-3,95), (18,122), (69,581), (3978,250898) 9100 5 (-10,90), (29,183), (30,190), (2094,95822), (139070,51862110) -9127 4 (22,39), (46,297), (128,1445), (167,2156) 9280 5 (-16,72), (-4,96), (24,152), (216,3176), (220289,103392543) 9284 4 (5,97), (56,430), (80,722), (2168,100946) 9297 8 (-21,6), (-12,87), (12,105), (18,123), (43,298), (64,521), (114,1221), (1414,53171) -9408 4 (28,112), (49,329), (364,6944), (18529,2522191) 9432 4 (-18,60), (-6,96), (33,213), (193,2683) -9455 4 (126,1411), (171,2234), (924,28087), (6264,495767) -9559 7 (22,33), (44,275), (55,396), (92,877), (130,1479), (440,9229), (3622,217983) 9585 4 (-21,18), (6,99), (24,153), (166,2141) 9649 4 (-12,89), (-10,93), (26,165), (8303,756576) 9676 4 (-18,62), (5,99), (62,498), (125,1401) -9748 9 (22,30), (29,121), (53,373), (94,906), (118,1278), (253,4023), (614,15214), (8069,724819), (12997,1481715) 9800 4 (-14,84), (1,99), (14,112), (49,357) 9801 4 (-18,63), (0,99), (22,143), (99,990) 9828 4 (-12,90), (-3,99), (16,118), (456,9738) 9836 4 (-10,94), (29,185), (70,594), (262,4242) 9936 6 (-20,44), (-15,81), (4,100), (12,108), (52,388), (660,16956) -9967 6 (32,151), (56,407), (98,965), (1052,34121), (72971,19711762), (195467,86419186)